GESTÃO DE RISCOS E REGULAMENTAÇÃO: IMPLEMENTAÇÃO DE SISTEMAS DE TOMADA DE DECISÃO ALGORÍTMICA

Vitalii VASYUKOV, Elena KIRILLOVA, Alexander FEDOROV, Ivan OTCHESKIY, Aleksandr GALKIN

Résumé


ABSTRACT


Objective: The widespread introduction and use of algorithmic decision-making systems reduces time and transaction costs and saves human resources. However, in addition to obvious advantages, the use of algorithms can carry risks, sometimes very serious ones.The purpose of this study is to categorize algorithmic decision-making systems by various parameters, identify the main risks associated with the use of these algorithms, and propose a set of measures to reduce the negative consequences of using such systems.


Methods: The research methods are based on a comprehensive analysis of a limited number of studies that were selected according to special parameters. The methods of analogy and comparative analysis were also used.
Results: The main features of the use of algorithmic decision-making systems are analyzed. Based on the results of the study, a classification into types according to criteria is proposed, and the risks of using algorithmic decision-making systems are classified.

Conclusion: A system of measures to minimize the negative consequences of using algorithms is proposed: a ban on the use of algorithm systems in the riskiest areas, a requirement to provide reports from government agencies using algorithms in their activities, mandatory notification of individuals if a legally significant decision has been made against them by the algorithm system, granting individuals the right to appeal a legally significant decision.


Keywords: decision-making algorithms; artificial intelligence; legally significant decisions.


RESUMO


Objectivo: A introdução e utilização generalizada de sistemas algorítmicos de tomada de decisão reduz o tempo e os custos de transacção e poupa recursos humanos. No entanto, para além das vantagens óbvias, a utilização de algoritmos pode acarretar riscos, por vezes muito graves. O objetivo deste estudo é categorizar os sistemas algorítmicos de tomada de decisão por vários parâmetros, identificar os principais riscos associados à utilização destes algoritmos, e propor um conjunto de medidas para reduzir as consequências negativas da utilização de tais sistemas.

Métodos: Os métodos de pesquisa baseiam-se numa análise abrangente de um número limitado de estudos que foram selecionados de acordo com parâmetros especiais. Também foram utilizados os métodos de analogia e análise comparativa.

Resultados: São analisadas as principais características da utilização de sistemas algorítmicos de tomada de decisão. Com base nos resultados do estudo, é proposta uma classificação em tipos de acordo com critérios e são classificados os riscos do uso de sistemas algorítmicos de tomada de decisão.

Conclusão: É proposto um sistema de medidas para minimizar as consequências negativas do uso de algoritmos: proibição do uso de sistemas de algoritmos nas áreas de maior risco, exigência de fornecimento de relatórios de agências governamentais que utilizam algoritmos em suas atividades, notificação obrigatória de indivíduos se um uma decisão legalmente significativa foi tomada contra eles pelo sistema de algoritmo, concedendo aos indivíduos o direito de apelar de uma decisão legalmente significativa.

Palavras-chave: algoritmo de tomada de decisão; inteligência artificial; decisões juridicamente significativas.


Mots-clés


Algoritmo de tomada de decisão; Inteligência artificial; Decisões legalmente significativas

Texte intégral :

PDF (Português (Brasil))

Références


Akhmetshin, E., Fayzullaev, N., Klochko, E., Shakhov, D., & Lobanova, V. (2024). Intelligent Data Analytics using Hybrid Gradient Optimization Algorithm with Machine Learning Model for Customer Churn Prediction. Fusion: Practice and Applications, 14 (2), 159-171. https://doi.org/10.54216/FPA.140213

Akhmetshin, E., Nemtsev, A., Shichiyakh, R., Shakhov, D., & Dedkova, I. (2024). Evolutionary Algorithm with Deep Learning based Fall Detection on Internet of Things Environment. Fusion: Practice and Applications, 14 (2), 132-145. https://doi.org/doi.org/10.54216/FPA.140211

Akhmetshin, E., Sultanova, S., Anupama, C.S.S., Kumar, K.V., & Lydia, E.L. (2023). Surveillance Video-Based Object Detection by Feature Extraction and Classification Using Deep Learning Architecture. Smart Innovation, Systems and Technologies, 371, 369–378. https://doi.org/10.1007/978-981-99-6706-3_32

Ali, R., Lee, S., & Chung, T. C. (2017). Accurate multi-criteria decision making methodology for recommending machine learning algorithm. Expert Systems with Applications, 71, 257-278.

Alibabaei, K., Gaspar, P. D., Lima, T. M., Campos, R. M., Girão, I., Monteiro, J., & Lopes, C. M. (2022). A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities. Remote Sensing, 14(3), 638.

Ananny, M, & Crawford, K. (2018). Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability. New Media & Society, 20(3), 973-989. https://doi.org/10.1177/1461444816676645

Arkhipov, V. V., Naumov, V. B., & Smirnova, K. M. (2021). The limits of automatic decision-making based on artificial intelligence in cases that have legal significance. Vestnik Saint Petersburg UL, 882.

Ashley, K., Branting, K., Margolis, H., & Sunstein, C. R. (2001). Legal Reasoning and Artificial Intelligence: How Computers" Think" Like Lawyers. University of Chicago Law School Roundtable, 8(1), 1-28.

Barfield, W. (2018). Towards a law of artificial intelligence. In Research Handbook on the Law of Artificial Intelligence (pp. 2-39). Edward Elgar Publishing.

Burton, J. W., Stein, M. K., & Jensen, T. B. (2020). A systematic review of algorithm aversion in augmented decision making. Journal of behavioral decision making, 33(2), 220-239.

Chakrabarti, D., Patodia, N., Bhattacharya, U., Mitra, I., Roy, S., Mandi, J., & Nandy, P. (2018, October). Use of artificial intelligence to analyse risk in legal documents for a better decision support. In TENCON 2018-2018 IEEE Region 10 Conference (pp. 0683-0688). IEEE.

Cheng, H. F., Wang, R., Zhang, Z., O’Connell, F., Gray, T., Harper, F. M., & Zhu, H. (2019, May). Explaining decision-making algorithms through UI: Strategies to help non-expert stakeholders. In Proceedings of the 2019 chi conference on human factors in computing systems (pp. 1-12).

Contini, F. (2020). Artificial intelligence and the transformation of humans, law and technology interactions in judicial proceedings. Law, Tech. & Hum., 2, 4.

Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., & Huq, A. (2017, August). Algorithmic decision making and the cost of fairness. In Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining (pp. 797-806).

Coston, A., Kawakami, A., Zhu, H., Holstein, K., & Heidari, H. (2023, February). A validity perspective on evaluating the justified use of data-driven decision-making algorithms. In 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) (pp. 690-704).

De Campos, G. R., Falcone, P., Hult, R., Wymeersch, H., & Sjöberg, J. (2017). Traffic coordination at road intersections: Autonomous decision-making algorithms using model-based heuristics. IEEE Intelligent Transportation Systems Magazine, 9(1), 8-21.

de Paula, L. B., & Marins, F. A. S. (2018). Algorithms applied in decision-making for sustainable transport. Journal of cleaner production, 176, 1133-1143.

Dokholyan, S., Ermolaeva, E. O., Verkhovod, A. S., Dupliy, E. V., Gorokhova, A. E., Ivanov, V. A., & Sekerin, V. D. (2022). Influence of Management Automation on Managerial Decision-making in the Agro-Industrial Complex. International Journal of Advanced Computer Science and Applications (IJACSA), 13(6). http://dx.doi.org/10.14569/IJACSA.2022.0130672

Fagan, F., & Levmore, S. (2019). The impact of artificial intelligence on rules, standards, and judicial discretion. S. Cal. L. Rev., 93, 1.

Gillingham, P. (2019). Can predictive algorithms assist decision‐making in social work with children and families?. Child abuse review, 28(2), 114-126.

Goodman, B., & Flaxman, S. (2017). European Union regulations on algorithmic decision-making and a “right to explanation”. AI magazine, 38(3), 50-57.

Gordon, T. F. (2013). The pleadings game: An artificial intelligence model of procedural justice. Springer Science & Business Media, 246. https://doi.org/10.1007/978-94-015-8447-0

Green, B., & Chen, Y. (2019). The principles and limits of algorithm-in-the-loop decision making. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1-24.

Greenstein, S. (2022). Preserving the rule of law in the era of artificial intelligence (AI). Artificial Intelligence and Law, 30(3), 291-323.

Harper, P. R. (2005). A review and comparison of classification algorithms for medical decision making. Health policy, 71(3), 315-331.

Hou, J., & O'Brien, D. C. (2006). Vertical handover-decision-making algorithm using fuzzy logic for the integrated Radio-and-OW system. IEEE Transactions on Wireless Communications, 5(1), 176-185.

Kaliszewski, I. (2000). Using trade-off information in decision-making algorithms. Computers & Operations Research, 27(2), 161-182.

Kannai, R., Schild, U., & Zeleznikow, J. (2007). Modeling the evolution of legal discretion. an artificial intelligence approach. Ratio Juris, 20(4), 530-558.

Karliuk, M. (2018). Ethical and legal issues in artificial intelligence. International and Social Impacts of Artificial Intelligence Technologies, Working Paper, (44).

Kelly C. J. et al. (2019). Key challenges for delivering clinical impact with artificial intelligence. BMC medicine, 17(1), 1-9.

Khoruzhy, L.I., Katkov, Y.N., Katkova, E.A., Khoruzhy, V.I., & Dzhikiya, M.K. (2023). Opportunities for the Application of a Model of Cost Management and Reduction of Risks in Financial and Economic Activity Based on the OLAP Technology: The Case of the Agro-Industrial Sector of Russia. Risks, 11(1), 8. https://doi.org/10.3390/risks11010008

Kiseleva, I. A., Tramova, A. M., Sozaeva, T. K., & Mustaev, M. M. (2021). Decision-Making Modeling in the Context of Risk and Uncertainty Caused by Social and Political Processes. Centro Universitário Curitiba - Unicuritiba, 2(3), 44-59.

Kochenderfer, M. J., Wheeler, T. A., & Wray, K. H. (2022). Algorithms for decision making. MIT press.

Labutina, N., Polyakov, S., Nemtyreva, L., Shuldishova, A., & Gizatullina, O. (2023). Neural Correlates of Social Decision-Making. Iranian Journal of Psychiatry, 19(1), 148-154.

Leheza, Y., Len, V., Shkuta, O., Titarenkо, O., & Cherniak, N. (2022). Foreign experience and international legal standards for the application of artificial intelligence in criminal proceedings. Revista de la universidad del zulia, 13(36), 276-287.

Levy, K., Chasalow, K. E., & Riley, S. (2021). Algorithms and decision-making in the public sector. Annual Review of Law and Social Science, 17, 309-334.

Li, X., Yi, S., Cundy, A. B., & Chen, W. (2022). Sustainable decision-making for contaminated site risk management: A decision tree model using machine learning algorithms. Journal of Cleaner Production, 371, 133612.

Littman, M. L. (1996). Algorithms for sequential decision-making. Brown University.

Liu, H. W., Lin, C. F., & Chen, Y. J. (2019). Beyond State v Loomis: artificial intelligence, government algorithmization and accountability. International journal of law and information technology, 27(2), 122-141.

Mahmud, H., Islam, A. N., Ahmed, S. I., & Smolander, K. (2022). What influences algorithmic decision-making? A systematic literature review on algorithm aversion. Technological Forecasting and Social Change, 175, 121390.

Matvienko E., Zolkin A., Suchkov D., Shichkin I., & Pomazanov V. (2022). Applying of smart, robotic systems and big data processing in agro-industrial complex. IOP Conference Series: Earth and Environmental Science, 981, 032002. https://doi.org/10.1088/1755-1315/981/3/032002.

Mirzagitova, A., Kirillova, E., Artemova, E., Aleshkov, A., Fedorov, A., & Panova, N. (2023). Forming a System of Sustainable Development Indicators to Improve the Efficiency of Legal Regulation of Environmental Protection. Revista Relações Internacionais do Mundo Atual Unicuritiba, 4(42), 749-764.

Mirzagitova, A., Kirillova, E., Artemova, E., Aleshkov, A., Fedorov, A., & Panova, N. (2023). Forming a System of Sustainable Development Indicators to Improve the Efficiency of Legal Regulation of Environmental Protection. Revista Relações Internacionais do Mundo Atual Unicuritiba, 4(42), 749-764.

Moses, L. B. (2017). Artificial intelligence in the courts, legal academia and legal practice. AUSTRALIAN LJ, 91, 561.

Muyang, G., Sekerin, V., Efremov, A., Gorokhova, A., & Gayduk, V. (2023). Legal Basis for the Development of an Industrial Internet Platform in the Context of Digital Transformation. Revista Jurídica Unicuritiba, 3(75), 667-678.

Nebro, A. J., Ruiz, A. B., Barba-González, C., García-Nieto, J., Luque, M., & Aldana-Montes, J. F. (2018). InDM2: Interactive dynamic multi-objective decision making using evolutionary algorithms. Swarm and Evolutionary Computation, 40, 184-195.

Newell, S., & Marabelli, M. (2015). Strategic opportunities (and challenges) of algorithmic decision-making: A call for action on the long-term societal effects of ‘datification’. The Journal of Strategic Information Systems, 24(1), 3-14.

Ojha, M., Singh, K. P., Chakraborty, P., & Verma, S. (2019). A review of multi-objective optimisation and decision making using evolutionary algorithms. International Journal of Bio-Inspired Computation, 14(2), 69-84.

Pathak, P. C., Nadeem, M., & Ansar, S. A. (2024). Security assessment of operating system by using decision making algorithms. International Journal of Information Technology, 1-10.

Peeters, R. (2020). The agency of algorithms: Understanding human-algorithm interaction in administrative decision-making. Information Polity, 25(4), 507-522.

Perc, M., Ozer, M., & Hojnik, J. (2019). Social and juristic challenges of artificial intelligence. Palgrave Communications, 5(1).

Polovchenko, K. (2021). Constitutional Court as Constitutional Complaint Institution: Evidence from Serbia. Law and Development Review, 14(1), 33–57. https://doi.org/10.1515/ldr-2020-0013

Ramirez, A. J., Knoester, D. B., Cheng, B. H., & McKinley, P. K. (2009, June). Applying genetic algorithms to decision making in autonomic computing systems. In Proceedings of the 6th international conference on Autonomic computing (pp. 97-106).

Reiling, A. D. (2020). Courts and artificial intelligence. In IJCA, 11, 1.

Scherer, M. (2019). Artificial Intelligence and Legal Decision-Making: The Wide Open?. Journal of international arbitration, 36(5).

Scholz Lauren. Algorithmic Contracts (October 1, 2016). Stanford Technology Law Review, 20. Retrieved from https://ssrn.com/abstract=2747701

Smith, A. (2020). Using artificial intelligence and algorithms. FTC, Apr.

Sultonova, L., Vasyukov, V., & Kirillova, E. (2023). Concepts of Legal Personality of Artificial Intelligence. Lex Humana, 15(3), 283–295. Retrieved from https://seer.ucp.br/seer/index.php/LexHumana/article/view/2596

Surden, H. (2022). Values embedded in legal artificial intelligence. IEEE Technology and Society Magazine, 41(1), 66-74.

Vasyukov, V. F., & Mitroshin, D. V. (2023). Some aspects of regulatory regulation of the operation of highly automated vehicles. Road Traffic Safety, 4, 11-18

Walters, R., & Novak, M. (2021). Artificial Intelligence and Law. In Cyber Security, Artificial Intelligence, Data Protection & the Law (pp. 39-69). Singapore: Springer Singapore.

Yan, H., & Zeleznikow, J. (2022). The Appropriate Use of Artificial Intelligence in Law: Investigating the Liability of Artificial Intelligence in Legal Decision-Making. ANU Journal of Law and Technology, 3(2).

Yang, M., Nazir, S., Xu, Q., & Ali, S. (2020). Deep learning algorithms and multicriteria decision-making used in big data: a systematic literature review. Complexity, 2020.

Ydyrys, S., Ibrayeva, N., Abugaliyeva, F., Zhaskairat, M., & Uvaliyeva, A. (2023). Regulatory and Legal Support for the Development of Digital Infrastructure in Rural Areas as a Factor in Improving the Level of Sustainable Development and Quality of Life of the Rural Population. Journal of Environmental Management and Tourism, 14(5), 69. https://doi.org/10.14505/jemt.v14.5(69).08

Zhdanova, O. A. (2023, January). Digital Financial Assets As Links Between The Innovation, Intellectual Property, And Financial Markets. Journal of Law and Political Sciences, 36(1), 72.

Žliobaitė, I. (2017). Measuring discrimination in algorithmic decision making. Data Mining and Knowledge Discovery, 31(4), 1060-1089.

Zuiderveen Borgesius, F. (2018). Discrimination, artificial intelligence, and algorithmic decision-making. Council of Europe, Directorate General of Democracy, 42.

Zuiderveen Borgesius, F. J. (2020). Strengthening legal protection against discrimination by algorithms and artificial intelligence. The International Journal of Human Rights, 24(10), 1572-1593.

Vasyukov V.F., & Mitroshin D.V. (2023). Otdelnye aspekty normativnogo regulirovaniya ekspluatatsii vysokoavtomatizirovannykh transportnykh sredstv [Selected aspects of regulatory control of highly automated vehicle operation] Bezopasnost dorozhnogo dvizheniya, 4, 11-18.




DOI: http://dx.doi.org/10.26668/revistajur.2316-753X.v2i78.6819

Renvois

  • Il n'y a présentement aucun renvoi.




Revista Jurídica e-ISSN: 2316-753X

Rua Chile, 1678, Rebouças, Curitiba/PR (Brasil). CEP 80.220-181

Licença Creative Commons

Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.