BUILDING AN EFFECTIVE KNOWLEDGE MANAGEMENT SYSTEM IN THE CONCEPT OF ARTIFICIAL INTELLIGENCE SYSTEM ORGANIZATION
Resumo
Objective: The study aims to analyze the design and operation of database and knowledge base machines within the concept of artificial intelligence system organization, focusing on creating AI systems to model solutions described by mathematical operations over natural language at logical and hardware levels.
Method: The research utilized a qualitative approach, reviewing scholarly articles from scientific journals to explore the organization of AI systems, particularly through the use of finite predicates and universal functional transformers.
Results: The study identifies that the key challenge in building a management system at the semantic or semantic-pragmatic level lies in constructing information databases (data and knowledge) related to the subject industry and developing output mechanisms for deriving necessary decisions. The mathematical structure of data in declarative languages is grounded in systems of predicate equations.
Conclusion: The paper concludes that building effective AI-based knowledge management systems involves integrating complex data and knowledge structures at semantic levels to enhance decision-making processes, highlighting the need for advanced computational architectures to handle the semantic complexity of data.
Palavras-chave
Texto completo:
PDFReferências
Abdikeev, N. M., & Kiselev, A. D. (2011). Upravlenie znaniiami korporatsii i reinzhiniring biznesa: Uchebnik [Corporation knowledge control and business reengineering: Textbook]. Moscow: Infra-M, 382 p.
Abdullaev, I., Prodanova, N., Ahmed, M. A., Lydia, E. L., Shrestha, B., Joshi, G. P., & Cho, W. (2023). Leveraging metaheuristics with artificial intelligence for customer churn prediction in telecom industries. Electronic Research Archive, 31(8), 4443-4458. https://doi.org/10.3934/era.2023227
Abdullaev, I., Prodanova, N., Bhaskar, K. A., Lydia, E. L., Kadry, S., & Kim, J. (2023). Task offloading and resource allocation in iot based mobile edge computing using deep learning. Computers, Materials & Continua, 76(2), 1463-1477. https://doi.org/10.32604/cmc.2023.038417
Abdullayev, I. S., Akhmetshin, E. M., Krasnovskiy, E. E., Tuguz, N. S., & Mashentseva, G. (2024). Soliton solutions to the ds and generalized ds system via an analytical method. Computational Methods for Differential Equations. https://doi.org/10.22034/cmde.2024.60337.2576
Babkin, E. A., Kozyrev, O. R., & Kurkina, I. V. (2006). Printsipy i algoritmy iskusstvennogo intellekta: Monografiia [Principles and algorithms of artificial intelligence: Monograph]. Nizhny Novgorod: Nizhny Novgorod State Technical University, 132 p.
Bondarenko, M. F., & Shabanov-Kushnarenko, Iu. P. (2011). Ob algebre konechnykh predikatov [On the algebra of finite predicates]. Bionika intellekta, 3(77), 3-13.
Briukhov, D. O., Stupnikov, S. A., & Kalinichenko, L. A. (2015). Izvlechenie informatsii iz raznostrukturirovannykh dannykh i ee privedenie k tselevoi skheme [Information extraction from multistructured data and its transformation into a target schema]. In L. A. Kalinichenko, & S. O. Starkov (Eds.) Proceedings of the XVIII International conference "Data analytics and management in data intensive domains" (DAMDID/ RCDL'2015) (pp. 81-90). Obninsk: National Research Nuclear University MEPhI.
Burkaltseva, D., Osmanova, E., Andryushchenko, I., Polskaya, S., Ostryk, V., & Kiselev, R. (2023). Creative decisions in the digitalization of recreational facilities in the course of specialists education. Revista Conrado, 19(90), 223-232.
Cherniak, T. A., Udakhina, S. V., & Kosukhina, M. A. (2015). Informatsionnoe obespechenie subektov ekonomicheskoi deiatelnosti: Bazy dannykh i znanii: Uchebnoe posobie [Information support of economic entities: Data and knowledge bases: Training manual]. St. Petersburg: Publishing House of Saint Petersburg University of Economics, Culture, and Business Administration, 200 p.
Eremeeva, E., Volkova, N., Khalilova, T., Yasnitskaya, Y., & Kurgaeva, Z. (2024). The influence of creative industries on their contribution to the economy and the level of socio-economic development of the territory (the case of Russia). Revista Gestão & Tecnologia, 24(2), 228-243.
Gataullin, T. M., Malykhin, V. I., & Goncharov, L. L. (2015). Znaniia, ikh kolichestvo, operaii nad nimi [Knowledge, its amount, and operations with it]. Vestnik Universiteta, 11, 94-99.
Gavrilova, T. A., & Khoroshevskii, V. F. (2000). Bazy znanii intellektualnykh system: Uchebnik po proektirovaniiu i programmirovaniiu sistem iskusstvennogo intellekta [Knowledge bases of intelligent systems: Textbook on the design and programming of artificial intelligence systems]. St. Petersburg: Piter, 384 p.
Gavrilova, T. A., Kudriavtsev, D. V., & Muromtsev, D. I. (2016). Inzheneriia znanii. Modeli i metody: Uchebnik [Knowledge engineering. Models and methods: Textbook]. St. Petersburg: Lan. 324 p.
Golenkov, V. V., Guliakina, N. A., Davydenko, I. T., & Shunkevich, D. V. (2017). Semanticheskaia model predstavleniia i obrabotki baz znanii [Semantic model of knowledge bases representation and processing]. In Proceedings of the XIX International conference "Data analytics and management in data intensive domains" (DAMDID/ RCDL'2017) (pp. 334-341). Moscow: Federal Research Center "Informatics and Management" of the Russian Academy of Sciences.
Grakova, N. V., Davydenko, I. T., & Sergienko, E. S. (2016). Sredstva strukturizatsii semanticheskikh modelei baz znanii [The tools of structuring the semantic models of knowleg bases]. Open Semantic Technologies for Intelligent Systems, 6, 93-106.
Igoshin, V. I. (2008). Matematicheskaia logika i teoriia algoritmov [Mathematical logic and algorithm theory]. Moscow: Akademia, 448 p.
Khairova, N. F., Uzlov, D. Iu., & Sharonova, N. V. (2014). Logiko-lingvisticheskaia model identifikatsii semanticheskikh otnoshenii sushchnostei sredstvami algebry konechnykh predikatov [Logical-linguistic model for the identification of semantic relationships between entities on the basis of finite predicates algebra]. Open Semantic Technologies for Intelligent Systems, 4, 267-270.
Kiseleva, I., Karmanov, M., Kuznetsov, V., & Sadovnikova, N. (2023). Modeling methods and risk factors in the activities of internet companies. Revista Gestão & Tecnologia, 23, 364-377.
Liu, Y., Zub, A., & Zha, Sh. (2023). Impact of attracting intellectual capital on the innovative development of construction engineering enterprises. Revista Gestão & Tecnologia, 22(4), 153-168.
Luneva, N. V. (2007). Arkhitektura i metadannye mnogoiazychnoi lingvisticheskoi bazy znanii [Architecture and metadata of amultilingual linguistic knowledge base]. Sistemy i sredstva informatsii, 17, 317-336.
Mamedov, A. A., & Shabanov-Kushnarenko, S. Iu. (2014). Formalizatsiia znanii sredstvami algebry konechnykh predikatov i reliatsionnykh setei [Formalization of knowledge by means of finite predicates algebra and relational networks]. In Vysshee tekhnicheskoe obrazovanie: Problemy i puti razvitiia: Proceedings of the 7th International scientific and methodological conference (pp. 191-192). Minsk: Belarusian State University of Informatics and Radioelectronics.
Nikolaeva, E., Kotliar, P., Nikolaev, M., & Kamaleeva, A. (2024). Digital niches: Ontological and cognitive status of the modern user in a seamless reality. Interacción y Perspectiva, 14(3), 774-781. https://doi.org/10.5281/zenodo.11156373
Osipov, G. S. (2015). Metody iskusstvennogo intellekta [Artificial intelligence methods] (2nd ed.). Moscow: Fizmatlit, 296 p.
Polichka, A. E., & Vostrikova, A. V. (2016). Algoritmy funktsionirovaniia produktsionnykh baz znanii i opisanie apparata matematicheskogo modelirovaniia [Algorithms of functioning of the productive base of knowledge and description of mathematical modeling apparatus]. Electronic Scientific Journal "Scientists Notes PNU", 7(4), 504-508.
Shunkevich, D. (2017). Ontology-based design of knowledge processing machines. Open Semantic Technologies for Intelligent Systems, 7, 73-94.
Sultonova, L., Vasyukov, V., & Kirillova, E. (2023). Concepts of legal personality of artificial intelligence. Lex Humana, 15(3), 283-295.
Telnov, Y., Kazakov, V., Danilov, A., & Fiodorov, I. (2024). Network enterprise architecture based on multiagent technology. Revista Gestão & Tecnologia, 24(2), 66-95.
Vasilev, D. N., & Chernov, V. G. (2008). Intellektualnye informatsionnye sistemy: Osnovy teorii postroeniia: Ucheb. posobie [Intelligent information systems: The basics of the theory of construction: training manual]. Vladimir: Vladimir State University Publishing House, 120 p.
Vorobev, G. G. (2016). Formirovanie bazy znanii intellektualnoi sistemy na osnove metodov analiticheskoi psikhologii K.G. Iunga [Forming a knowledge base of an intelligence system on the basis of C.G. Jung's analytical psychology methods]. Journal of Information Technologies and Computing Systems, 3, 89-97.
Vorobev, G. G., & Dmitrenko, L. G. (2015). Arkhitekturnye printsipy postroeniia intellektualnykh sistem [Architectural principles of building intelligent systems]. Saarbrücken: LAMBERT Academic Publishing, 65 p.
Zhdanov, A. A. (2012). Avtonomnyi iskusstvennyi intellekt [Autonomous artificial intelligence]. Moscow: Binom Lab. znanii, 361 p.
DOI: http://dx.doi.org/10.21902/Revrima.v4i46.7576
Apontamentos
- Não há apontamentos.
Revista Relações Internacionais do Mundo Atual e-ISSN: 2316-2880
Rua Chile, 1678, Rebouças, Curitiba/PR (Brasil). CEP 80.220-181


